Q-fever in the Netherlands
IPFA/PEI, May 26th 2010, Zagreb

prof.dr. Hans L. Zaaijer
Sanquin - Blood-borne Infections (BOI) & Acad.Med.Center - Clinical Virology
Amsterdam
notified cases of Q fever in NL, 2007-2009
Netherlands 2009: largest outbreak of Q fever ever
What is Q-fever?

An infectious disease of animals and a zoonosis of humans, world wide.

Causative agent: *Coxiella burnetii* (‘Query-fever’)
- a small, intracellular bacterium,
- spores, able to survive 40 months in environment

Reservoir: rodents, birds, farming animals, cats, dogs, insects (ticks)

Sheep, goats and cattle = main reservoir for human infection.
- excretion via dung, urine, milk, saliva, etc. placental tissue = highly infectious
- dried excreta: air-borne spread of spores from stables, wool, farming land.

Infection of humans via:
- Inhalation of spores (most frequent)
- Consumption of contaminated food (rare)
- Tick bite (incidental)
Symptoms of Q-fever

Humans:

50-60% asymptomatic infection

20% flu-like: head ache, fever, nauseous, muscle pain.

20% serious disease: persisting fever, chest pain, severe head ache, diarrhoea, vomiting, **often:** atypical pneumonia.

rare: hepatitis, pericarditis, meningo-encephalitis

3-5%? chronic infection (endocarditis): 1-11% *

• Increased risk if: pregnant; cor vitium; vascular disease.
• Pregnant women: abortion, premature birth.

Ruminants:

asymptomatic, abortion, premature birth
Diagnosis and treatment

first 2 weeks of disease: PCR on Cb DNA in serum
week 3 and later: serology (IgM, IgG; phase 2 and 1)

doxycycline 1 dd 200 mg, 14 days
the origin of Q fever in NL:

3 years of air borne spread of *Coxiella burnetii* spores from infected dairy goat farms
an example:

42 hospitalised patients in the surrounding area

De geitenmelkerij in het Zuid-Limburgse Voerendaal. (foto: Chris Keulen)

"Voerendaal is ziek van de geitenboerderij", NRC 11 december 2009.
1 report of transfusion transmitted Q fever in 1977
Q fever: policy of Sanquin Blood Transfusion Service

- Dutch Health Counsil (Gezondheidsraad): 'Q fever is not a threat to the safety of blood'.

in 2009 Sanquin decided to:

- study silent/incubating Coxiella infection among blood donors

- develop a Coxiella screeningstest based on PCR
 (started on March 15th 2010: routine screening of donations from high risk areas by PCR)
Q fever study by Sanquin

Samples:
- serum sample from all donations by consenting donors, collected at 6 collection stations, in the area most affected by Q fever in the two previous years. (November 2009: ~25,000 frozen samples)

a) November 2009: selection of 1000 'hottest' samples: PCR

b) 559/1000: serial (follow-up) samples available: serology in progress

Assays:
- real time PCR targeting insertion element IS1111 (transposase, 7-120 copies per genome); see Schneeberger et al., Clin. Vaccine Imm. 2010; 17(2): 286-290.

- serology: IgG and IgM, against phase 1 and 2 antigens, using both ELISA (Serion) and IFA (Focus, Cypress, CA).
Legenda

- inzamelcentrum met Q-monitoring
- inzamelcentrum zonder Q-monitoring

Q-koorts incidentie (aangegeven gevallen):
- 1 / week
- 2-5 / week
- 5-10 / week
- >10 / week
part 1: *C. burnetii* PCR on 1000 at risk donations:

6 reactive samples
(weak signals, high Ct values):
<table>
<thead>
<tr>
<th>donor</th>
<th>date</th>
<th>PCR Ct</th>
<th>IFA titles</th>
<th>Conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 donor A (Landerd)</td>
<td>26-5-2009</td>
<td>35.0</td>
<td>< 1:32 (4x)</td>
<td>early infection</td>
</tr>
<tr>
<td></td>
<td>18-8-2009</td>
<td>negative</td>
<td>fase 1 IgG 1:32</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>fase 1 IgM 1:256</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>fase 2 IgG 1:512</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>fase 2 IgM 1:256</td>
<td></td>
</tr>
<tr>
<td>2 donor B (Bernheze)</td>
<td>29-5-2009</td>
<td>43.2</td>
<td>fase 1 IgG 1:512</td>
<td>recent infection</td>
</tr>
<tr>
<td></td>
<td>26-6-2009</td>
<td>negative</td>
<td>fase 1 IgG 1:128</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>fase 1 IgM 1:32</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>fase 2 IgG 1:512</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>fase 2 IgM < 1:32</td>
<td></td>
</tr>
<tr>
<td></td>
<td>11-9-2009</td>
<td>negative</td>
<td>fase 1 IgG 1:128</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>fase 1 IgM 1:32</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>fase 2 IgG 1:512</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>fase 2 IgM < 1:32</td>
<td></td>
</tr>
<tr>
<td>3 donor C (Uden)</td>
<td>11-6-2009</td>
<td>38.3</td>
<td>< 1:32 (4x)</td>
<td>early infection</td>
</tr>
<tr>
<td></td>
<td>24-9-2009</td>
<td>negative</td>
<td>fase 1 IgG < 1:32</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>fase 1 IgM 1:32</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>fase 2 IgG 1:256</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>fase 2 IgM 1:128</td>
<td></td>
</tr>
<tr>
<td>4 donor D (Bernheze)</td>
<td>2-7-2009</td>
<td>45.3</td>
<td>< 1:32 (4x)</td>
<td>false positive</td>
</tr>
<tr>
<td></td>
<td>27-8-2009</td>
<td>negative</td>
<td>< 1:32 (4x)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8-10-2009</td>
<td>negative</td>
<td>< 1:32 (4x)</td>
<td></td>
</tr>
<tr>
<td>5 donor E (Landerd)</td>
<td>2-7-2009</td>
<td>41.8</td>
<td>< 1:32 (4x)</td>
<td>false positive</td>
</tr>
<tr>
<td></td>
<td>10-12-2009</td>
<td>negative</td>
<td>< 1:32 (4x)</td>
<td></td>
</tr>
<tr>
<td>6 donor F (Heusden)</td>
<td>2-7-2009</td>
<td>43.0</td>
<td>< 1:32 (4x)</td>
<td>false positive</td>
</tr>
<tr>
<td></td>
<td>10-12-2009</td>
<td>negative</td>
<td>< 1:32 (4x)</td>
<td></td>
</tr>
</tbody>
</table>
Q study by Sanquin

part 1: *C. burnetii* PCR on 1000 at risk donations:

- non-infectious Q DNA fragments present in blood?

- transfusion of fresh PCR+ donation into Q-negative mice

- 2 of the 3 PCR+ donations have been used:
 1 recipient has been tested by ELISA and IFA: IgG +++, IgM borderline (T=10m)
part 2: *C. burnetii* serology on 559 series of samples:

in progress.
last sample of each series tested by IgG phase 2 Serion ELISA:
444 series tested:
 387/444 = neg
 57/444 = pos in last sample;
 13/50 = neg in first sample
(to be confirmed by IFA)

→ high seroprevalence (13%) and high seroconversion rate (3%)

→ specificity: random donors from North Holland province: 92/92 = neg
part 3: look back (by dr. Marian van Kraaij):

- 8 donors notified their blood bank: (lab confirmed) Q fever within 3 weeks after donation (mean 13, range 5-22 days)

- PCR on repository samples of last donation:
 1/8 PCR positive (recipient: terminal patient, not tested)

- 6 recipients (PCR- donors):
 2/6 positive IgG serology:
 1x known with diagnosed Q fever before transfusion
 1x persisting IgG, no clinical signs, living in endemic area
Q fever and Dutch blood donors: *summary and questions*

- 2 possible cases of transfusion transmitted Coxiella infection.
 - specific IgG in 2 recipients:
 - 1x PCR positive donor (study)
 - 1x PCR negative donor (look-back) who reported Q fever after donation

- High seroprevalence and seroconversion rate among local donors.

- DNA-aemia = infectious bacteraemia?

- Risk of breathing in Brabant overshadows the risk of transfusion?

- Is the sensitivity of screening test (PCR) sufficient?

2010:
- screening of at-risk donations since March 15th: negative
- no increase (yet) of notification or clinical cases
Sanquin

Boris Hogema
Michel Molier
Ed Slot
Theo Cuijpers
Marco Koppelman
Harry Bos
Marian van Kraaij
Hans Zaalijer

JBZ, RIVM, St.AH

Peter Schneeberger
Mirjam Hermans
Wim van der Hoek
Frederika Dijkstra
Erik van Hannen
Blood collection in East Brabant

in affected area in 2008, during 6 months:
38,420 full blood donations and 21,410 other donations