virus safety in plasma-derived therapeutics: a Merck perspective

IPFA Yogyakarta, March 2017

Louis Wong
Associate director, Plasma Initiative, Asia-Pacific
Content

- Regulatory Expectations for Plasma-Derived Therapeutics
- BioReliance Testing Services
Virus Contamination in Plasma – A Reality

Plasma Product Contamination

• 1980s: HIV contaminated Coagulation Factor
• 1994: Hepatitis C contaminated IgG
• 1995: vCJD contamination
• Other threats more recently... Hepatitis E, West Nile Virus, Ebola, Zika...
Virus Safety in Plasma: Part of a Total Risk Mitigation Program

- Regular, qualified donors
- Donation control (serological and NAT tests)
- Inventory Hold, look back procedure
- Serological and NAT Tests on plasma pool
- cGMP
- Pathogen inactivation/removal steps
- Batch Release
- Post-marketing surveillance, pharmacovigilance
Regulatory Expectations for human plasma protein products
Regulatory Expectations for Human Plasma Protein Products

- Incorporate at least 2 orthogonal, effective virus inactivation/removal steps with at least 4 log virus reduction in each step is desirable
- Virus Inactivation methods/Virus removing filters

<table>
<thead>
<tr>
<th>Virus Group Choices</th>
<th>Types</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enveloped Viruses</td>
<td>HIV 1 Model for Hepatitis C</td>
<td>Pestivirus BVDV could be considered a “worst-case” for HCV.</td>
</tr>
<tr>
<td>Enveloped DNA Viruses</td>
<td>Herpes Virus</td>
<td>A validation study should be performed with an appropriate enveloped DNA virus, e.g. a herpesvirus such as pseudorabies.</td>
</tr>
<tr>
<td></td>
<td>Hepatitis B (duck model)</td>
<td></td>
</tr>
<tr>
<td>Non-enveloped Viruses</td>
<td>Hepatitis A B19V</td>
<td>HAV and B19V should be used for validation studies for coagulation factors (History of transmission).</td>
</tr>
<tr>
<td>Model viruses for virus reduction filtration (nanofiltration)</td>
<td>HIV BVDV</td>
<td>For small pore size filters designed for removal of small non-enveloped viruses, HIV and BVDV should still be part of the virus panel, but robustness studies may focus on small non enveloped viruses. For medium pore size filters, BVDV is appropriate for robustness studies.</td>
</tr>
</tbody>
</table>
Virus inactivation/removal capacity

Points to consider for specific product classes

EMA/CHMP/BWP/706271/2010 (2011) / Section 8.3

<table>
<thead>
<tr>
<th>Product Class</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coagulation Factors</td>
<td>Non-enveloped viruses such as hepatitis A and B19V have been transmitted by this class of products. For Factor IX products, steps should be included in the process that are effective for HAV and B19V.</td>
</tr>
<tr>
<td>Immunoglobulins</td>
<td>Immunoglobulin products have a good safety record for the known non-enveloped viruses due in part to the contribution from neutralising antibodies in the product.</td>
</tr>
<tr>
<td>Albumin</td>
<td>Albumin manufactured by an established fractionation process that includes the terminal pasteurisation specified in the European Pharmacopoeia monograph, has an excellent virus safety record.</td>
</tr>
<tr>
<td>S/D Plasma</td>
<td>SD plasma has good safety measures for enveloped viruses and safety measures are in place for HAV and B19 (Ph. Eur. monograph Human Plasma (Pooled and Treated for Virus Inactivation)).</td>
</tr>
</tbody>
</table>
Manufacturing Process Validation Activities by Drug Development Phase

<table>
<thead>
<tr>
<th>Process Validation Activities</th>
<th>Clinical Phases</th>
<th>Supporting Activities</th>
</tr>
</thead>
</table>
| Perform Preliminary Clearance of Process Impurities | | ---- Initiate Process and Assay Development
Initiate Preliminary Process Characterization
Establish Preliminary Reference Standard |
| **Initiate Virus Clearance Studies** | | ---- Initiate Clinical Manufacturing |
| Initiate Manufacturing Process Characterization (test limits) | | ---- Initiate Stability Studies
Submit IND Application |
| Approve Manufacturing Process Validation Plan | | Conduct Continuing Process & Assay Development
Qualify or Validate Assays |
| Develop/Approve Process Validation Protocols | | ---- Establish Gene Therapy Product Characterization
---- Establish Manufacturing Process Definition
---- Conduct Pivotal Clinical Trails |
| **Conduct Additional Virus Clearance Studies** | 1 | |

1. Initiate Virus Clearance Studies
2. Approve Manufacturing Process Validation Plan
Conduct Additional Virus Clearance Studies
Virus Safety: Multi-Layer Strategy
A Merck Perspective

Prevent
Virus Safety of Raw Materials

Detect
Testing of In-Process and Final Product

Remove
Virus Clearance Technologies
Overcoming challenges to transition your raw materials

Start with the end in mind

- Quality standards differ for raw materials
- Quality requirements increase for drugs approaching commercial launch

![Diagram showing quality features and processes across different phases of research and development.](image-url)
Overcoming challenges to transition your raw materials

Comparison of approaches

Traditional development

✓ Focus on end product safety and performance
✓ Fixed process – do not change make any changes after Research
✓ Fixed specifications
✓ Work with suppliers starting phase II

Enhanced development

✓ Systematic – understand material features and process to meet critical to quality attributes
✓ Supply Chain Risk Management to ensure uninterrupted drug supply
✓ Work with suppliers who can support you in transitioning to Clinical and comply with Regulatory requirements
The Merck EMPROVE® Concept

The EMPROVE concept brings a package of benefits to the plasma fractionation customer that include:

➢ Strong process safety and reliability – High quality raw materials with GMP production;

➢ Strong regulatory support – EMPROVE dossier in CTD format allows the customer to save time and money;

➢ Full and permanent access to main documents in our website;

➢ Top level Quality Control procedures, covering the manufacturing and the supply chain steps.

Quality, Safety and Stability are the key words in the EMPROVE® brand products for blood plasma fractionation
General Fractionation Process Steps with EMPROVE® Chemicals

- Cryoprecipitation
- Precipitation
- Centrifugation/Depth Filtration
- Dissolution of Fraction II/III paste
- Lyophilization
- Filling
- Final filtration
- Formulation
- Nanofiltration
- Concentration/Diafiltration
- Anion Exchange Chromatography

Stabilizers
- EMPROVE® exp Glycine
- Sodium Chloride

Precipitation
- EMPROVE® exp PEG4000
- Sodium Capylate

Buffers
- Acetates/Phosphates
- Sodium Hydroxide

SD/Low pH
- EMPROVE® exp TnBP, Triton® X-100, Tween® 80
- Acetic Acid, Sodium acetate trihydrate, Caprylic Acid

Bulking Agents/Stabilizers
- EMPROVE® exp Sucrose, Sorbitol, Maltose, L-Alanine, Glycin, N-Acetyl-DL-tryptophan
Virus Safety: A Multi-Layer Strategy

1. Prevent
 Virus Safety of Raw Materials

2. Detect
 Testing of In-Process and Final Product

3. Remove
 Virus Clearance Technologies
Types of Process Steps

EMA/CHMP/BWP/706271/2010 Guideline on plasma-derived medicinal products
“For all plasma-derived medicinal products, it is an objective to incorporate effective steps for inactivation/removal of a wide range of viruses of different physico-chemical characteristics.”

Inactivation
- Heat Treatment
 - Pasteurization (60°C, 10 hours, Albumin)
 - Lyophilization / dry heat
- Solvent/Detergent (TnBP, Triton X-100, Tween 80)
- Low/High pH (Caprylic acid, Acetic acid)
 - Column Elution/Sanitization

Partitioning
- Precipitation
 - EtOH
 - PEG
 - Caprylic Acid
- Chromatography
 - Ion Exchange
 - Affinity
 - Gel Filtration
- NanoFiltration
Viral Reduction Capacities by Contributive Steps

<table>
<thead>
<tr>
<th>Spiked viruses</th>
<th>ENVELOPED VIRUSES</th>
<th>NON-ENVELOPED VIRUSES</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HIV-1</td>
<td>Sindbis</td>
</tr>
<tr>
<td>Model for</td>
<td>HIV</td>
<td>HCV</td>
</tr>
<tr>
<td>Specific steps</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S/D treatment</td>
<td>e 4.4</td>
<td>e 5.4</td>
</tr>
<tr>
<td>Nanofiltration through 20 nm filter</td>
<td>5.6 ♂</td>
<td>5.6 ♂</td>
</tr>
<tr>
<td>Contribute steps</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Caprylic acid fractionation</td>
<td>e 4.0</td>
<td>NT</td>
</tr>
<tr>
<td>Anion-exchange chromatography</td>
<td>NT</td>
<td>NT</td>
</tr>
<tr>
<td>Final product: LowpH incubation in the final container</td>
<td>4.0</td>
<td>NT</td>
</tr>
<tr>
<td>Final product: Virus-neutralising capacity by the antibodies</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Overall viral reduction capacity</td>
<td>e 18.0</td>
<td>e 11.0</td>
</tr>
</tbody>
</table>

Source: Production of ClairYg, Christophe Segard, LFB
Solvent/Detergent Viral Inactivation using Single-Use Technology

Objectives:
• Quantify Impact of S/D Treatment on Chemical Compatibility, Extractables/Leachables and Mixing Efficiency in Single-Use Bags
• Determine Efficacy of S/D Viral Inactivation in Single-Use Bags
• Investigate Impact on Protein Activity
• Create Best Practices for performing S/D Process Step in Single-Use Mixers
Outcomes of Study

Virus Reduction on Human IgG performed in Mobius SU bags

Mixing Efficiency in Mobius SU-Mixer 50L and 500L
Virus Removal by Nanofiltration

- Virus Filtration performed on 10 different Grifols plasma proteins/products

- Conclusion of Nanofiltration being extremely effective step in virus reduction

- Minimal influence of process parameters like pH, temperature, Conductivity, during NF

<table>
<thead>
<tr>
<th>Protein (or product)</th>
<th>Enveloped viruses (≥40 nm)</th>
<th>Non-enveloped viruses (Small (<35 nm)</th>
<th>Very small (<25 nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PRV</td>
<td>HIV-1</td>
<td>WNV</td>
</tr>
<tr>
<td>A</td>
<td>≥4.6</td>
<td>≥4.8</td>
<td>≥3.6</td>
</tr>
<tr>
<td>B</td>
<td>≥6.1</td>
<td>≥5.6</td>
<td>≥4.5</td>
</tr>
<tr>
<td>C</td>
<td>≥6.0</td>
<td>≥4.0</td>
<td>≥5.4</td>
</tr>
<tr>
<td>D</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D1</td>
<td>≥5.5</td>
<td>≥5.9</td>
<td>≥5.8</td>
</tr>
<tr>
<td>D2</td>
<td>≥5.2</td>
<td>≥6.9</td>
<td>n.d.</td>
</tr>
<tr>
<td>E</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E1</td>
<td>≥4.2</td>
<td>≥3.8</td>
<td>≥6.2</td>
</tr>
<tr>
<td>E2</td>
<td>≥5.4</td>
<td>≥5.4</td>
<td>n.d.</td>
</tr>
<tr>
<td>F</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F1</td>
<td>≥6.0</td>
<td>≥6.8</td>
<td>≥7.0</td>
</tr>
<tr>
<td>F2</td>
<td>n.d.</td>
<td>≥4.5</td>
<td>≥6.0</td>
</tr>
<tr>
<td>G</td>
<td>n.d.</td>
<td>≥6.3</td>
<td>n.d.</td>
</tr>
</tbody>
</table>

BVDV: bovine viral diarrhea virus; EMCV: murine encephalomyocarditis virus; HAV: hepatitis A virus; HIV: human immunodeficiency virus; n.d.: not determined; PPV: porcine parvovirus; PRV: pseudorabies virus; WNV: West Nile virus.

Source: Robustness of Nanofiltration for increasing the viral safety margin of biological products
S Caballero et al., Grifols 2014
Virus Clearance Validation

1. Prevent
 Virus Safety of Raw Materials

2. Detect
 Testing of In-Process and Final Product

3. Remove
 Virus Clearance Technologies

BioReliance® by SAFC
BioReliance Clearance Services

Perform studies at 2 separate facilities

- Dedicated facilities in both Rockville (MD), USA and Stirling, Scotland.
 - Rockville facility has 4 study suites and a BSL-3 lab.
 - Stirling facility has 5 study suites and a BSL-3 lab.
 - Both make use of state-of-the-art equipment Endpoint testing conducted in adjacent virus titration labs to increase the speed and efficiency of sample analysis.

- Trained and experienced personnel provide technical and regulatory support for all projects.

- Besides Viral Clearance and TSE Clearance studies, Mycoplasma, DNA and Bacterial Clearance studies can also be performed.
Viral Clearance Study Design
Viral Clearance Studies

When are they performed?

- Stage of clinical trial & indication
- New process design
- Process changes
- Cleaning validation
- Updating safety data on licensed products
- Regulatory changes
Viral Clearance Studies

Testing each process step

Spike virus into process intermediate. Must be appropriate to load material (e.g., liquid vs. solid)

Perform scaled-down filtration process step

Collect fractions

Perform scaled-down chromatography process step(s)

Collect fractions (e.g., flow-through, eluate, regenerate)

Solve, Detergent, pH inactivation

Tritrate for virus infectivity level (TCID50)*

Reduction = \frac{[\text{virus}] \text{load}}{[\text{virus}] \text{product}}

*qPCR for some removal steps
Viral Clearance Studies
Generic timelines

| Study Type | Wk 1 | Wk 2 | Wk 3 | Wk 4 | Wk 5 | Wk 6 | Wk 7 | Wk 8 | Wk 9 | Wk 10 | Wk 11 | Wk 12 | Wk 13 | Wk 14 | Wk 15 | Wk 16 | Wk 17 | Wk 18 | Wk 19 | Wk 20 |
|--------------------------|------|------|------|------|------|------|------|------|------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| **Early Stage** | | | | | | | | | | | | | | | | | | | | |
| Clearance Study Timelines| Design /SOW | Pre Study | Spiking Study | Assays | Draft report | Final Report |
| **Total:** | | | | | | | | | | | | | | | | | | | | **12-16 Weeks** |
| **Late Stage** | | | | | | | | | | | | | | | | | | | | |
| Clearance Study Timelines| Design /SOW | Pre Study | Spiking Study | Assays | Draft report | Final Report |
| **Total:** | | | | | | | | | | | | | | | | | | | | **16-20 Weeks** |

Performing a viral clearance study
Conclusion

• Three-Pillar Approach for Total Virus Safety Considerations in Plasma
• Start with the end in mind
• Merck Key Competencies in Plasma:
 Regulatory Experts, Virus Clearance Team, Process Validation Experience, Plasma Fractionation Process Knowledge and Leading Technologies
Thank You!

contact:
Louis.wong@MerckGroup.com