Process intensification in plasma Immunoglobulin G manufacturing using novel technologies providing enhanced productivity

Collaboration work with Taipei Medical University, Taipei, Taiwan (Prof. Thierry Burnouf, College of Biomedical Engineering)

Josephine Cheng Senior Consultant Strategy Operationalization – traditional modalities – APAC

IPFA/PEI 27^{th,} May 4-6, 2021

The life science business of Merck operates as MilliporeSigma in the U.S. and Canada.

Millipore®

Preparation, Separation, Filtration & Testing Products

Agenda

- 1
- **Introduction IGG purification**
- 2

Study summary

2

Conclusions

Immunoglobulin G

High market demands drives exploration in process optimization

Source: Plasma fractionation markets report 2020, marketsandmarkets. IPFA 2021 | Josephine Cheng

From Plasma donation to patient adminstration

Experimental flow with key steps used in purification

Confidential – Manuscript under review

A generic, easy-to-operate, flowthrough-mode purification process that provides scalable & robust purification with enhanced productivity and quality IGG fitting for therapeutic usage.

Quality criteria:

- Virus safety
- Low IgA & IgM contamination
- Low FXI/XIa
- Lack of Hemolytic effect
- Lack of chemicals used for virus inactivation

Various intermediate filtration steps reducing bioburden

Prefilters provide significant protection effect to sterile filters and can be used stand alone

Bioburden filters & clarification filters used in the study:

- Millstak+® A1HC
- Milligard® PES 1.2/0.2
- Millipore Express[®]
 SHC 0.5/0.2
- Durapore® filter0.22

Steps	Selected Prefilters (Recovery %)	Selected Sterile Filter	Recovery (%)
Post CA	MPES (100%)	Durapore® filter	> 99
Post UF/DF	Millistak+® A1HC	Millipore Express® SHC	~ 100
Post AEX		Millipore Express® SHC	~ 100
Post 1st SPTFF	MPES (100%)	Durapore® filter	> 96
Post Anti A/B		Millipore Express® SHC	~ 100
Post C18 resin	MPES (100%)	Millipore Express® SHC	~ 98
Post final SPTFF		Millipore Express® SHC	~ 86

Observations:

- w/o prefilter- Millipore Express ® SHC generally performs better
- w/ prefilter sometimes Durapore® performs better
- Prefilter shows significant protecting effect / reducing membrane area needed for sterile filters.
- Millistak® A1HC clarification filter reduced significantly the particles/ precipitation.

Anion Exchange chromatography (FT) Major step to remove IgA & IgM

Pilot scale in 3 batches IgG/IgA/IgM

Small scale in 10 cycles IgG1/IgG2/IgG3/IgG4

Summary:

- 1. Optimal pH for loading identified @ pH 6.0
- 2. Purity IgG avg. 82% to 99% in small and pilot scale.
- 3. 200 cycles test with standard cleaning conditions confirms the robustness.
- 4. No changes in IgG subclasses.
- 5. No thrombogenicity activity detected

Learn More with our webinar:

<u>Chromatography: Chromatographic strategies</u> <u>for IVIG purification - Part 2</u>

Immunoaffinity chromatography

Robustly reducing the blood-type specific isoagglutinins

*samples tested at 30mg/ml concentration from 1^{st} SPTFF (6X) step to the last step.

Virus Inactivation and removal by C18 RP-chromatography

Efficient removal of S/D by Licroprep C18 (40 – 63um) to nondetactable level

Α.

Human IgG: 0.3% TnBP + 1% TX100 LRV Results					
Vinne	Device	LRV at Incubation Time (min)			
Virus		5	30	60	360
XMuLV	Mobius 1	≥5.5	≥5.3	≥5.3	≥5.4
AMUL V	Mobius 2	≥5.5	≥5.3	≥5.3	≥5.5
BVDV	Mobius 1	≥4.5	≥4.4	≥4.6	≥4.5
	Mobius 2	≥4.4	≥4.6	≥4.4	≥4.5

C.

Residual TnBP of SD-IgG (Ratio of resin and loaded IgG)	Batch 3 (1mL:6mL)	
C18	<1 ppm	
SPTFF-5X	<1 ppm	

Residual Triton X-100 of SD-IgG (Ratio of resin and loaded IgG)	Batch 3 (1mL:6mL)
C18	<2 ppm
SPTFF-5X	<2 ppm

Summary:

- A. 0.3% TnBP + 1% Triton X-100 provides > 4-5 LRV in time as short as 5 minutes.
- B. Typical chromatography for FT mode S/D-IGG running through C18 column.
- C. TnBP residual tested on GC-MS with results < 1ppm, Triton X-100 residual tested by HPLC with results < 2ppm, showing a robust removal with the loading quantity defined (6ml S/D-IGG/ml C18 packed resin), with capacity tested at 14 ml S/D-IGG/ml C18 resin)

Learn More with our webinar: Solvent Detergent Viral Inactivation using S.U Technology in Blood Fractionation Processes

^{*}Table A source: Hsieh YT, Mullin L, Greenhalgh P, Cunningham M, Goodrich E, et al.: Single-use technology for solvent/detergent virus inactivation of industrial plasma products. *Transfusion* 2016; 56: 1384-93.

Single-Pass Tangential Flow Filtration

A gentle method for inline concentration & high concentration

ultrafiltration

Summary:

- 1. Sequential optimization to identify parameters to reach target concentration 20%. (200 mg/ml)
- 2. SPTFF before Eshmuno® P Anti-A/B step reduced loading time, buffer consumed, also improved the AC performance.
- 3. SPTFF for final concentration successfully provided a gentle (low shear force), scalable, high recovery, and easy-to-operate method for high concentration ultrafiltration.

Overall Quality test results

Satisfying concentration effect and IgA/IgG removal ability

Total protein concentration (mg/ml)

IgA concentration (mg/ml)

Quality check benchmarking market product

Comparable purity to market product

Fractions	Non-IgG	IgG
Unit	%	%
5XSPTFF-B1	4.8	95.2
5XSPTFF-B2	1.1	98.9
5XSPTFF-B3	0.6	99.4
Privigen® IgG	0.3	99.7

Zone electrophoresis confirmed the high purity of the final IgG. The purity of batch 3 (5X SPTFF) reaches almost 100%.

SDS-PAGE under non-reducing (left) and reducing (right) conditions showing the step wise purification process, purity was enhanced especially after AEX step.

4: Anti-A-FT 5: Anti-B-FT

^{6:} C18 7:SPTFF-5X 8:Privigen IgG

Confidential – Manuscript under review

^{*5} µg of protein loaded on to 4-12% Bis-Tris SDS-PAGE

Conclusions

Proof of concept for a generic process with intensified processing:

- 1. Milligard® PES 1.2/0.2 prefilters effectively reduced the filtration area needed for sterile filters e.g. Millipore Express® SHC or Durapore® filters
- 2. Clarification using Millistak^{+®} HC A1HC to facilitate downstream purification.
- 3. Fractogel® TMAE (M) anion exchange chromatography for efficient removal of IgA and IgM, with well maintained IgG subclasses.
- 4. Eshmuno® P anti-A and Eshmuno® P anti-B chromatography for removal of anti-A and anti-B agglutinins.
- 5. S/D used in virus inactivation can be efficiently removed using Licroprep® C18 RP chromatography.
- 6. Use of SPTFF as a mild and robust approach to concentrate IgG to a target of 20% concentration.
- 7. Recovery from 92 100% for each step resulting in an overall process recovery of greater than 70% under a worst-case scenario, with opportunities to improve further with additional optimization.
- 8. Such flow through methods combined with single-pass TFF technology should be readily scalable, and easy to apply for various IgG products including polyvalent IgG, hyperimmune, or convalescent immunoglobulins.

Acknowledgements

Taipei Medical University, Taiwan (TMU):

- Prof. Thierry Burnouf
- Yu-Wen Wu
- Chen-Yun Wang
- Cheum Lam Hong

Merck:

- Sharon ShangJung Wu
- Karen Waiyu Chan
- Leo Xun Liao
- Xisheng Cao
- Bin Wang

Thank You

Josephine.cheng@merckgroup.com

Merck, Millipore, Eshmuno, Fractogel, Durapore, Milligard, LiChroprep, Millipore Express, Millistak and the vibrant M are trademarks of Merck KGaA, Darmstadt, Germany or its affiliates. All other trademarks are the property of their respective owners. Detailed information on trademarks is available via publicly accessible resources.

© April 2021 Merck KGaA, Darmstadt, Germany and/or its affiliates. All Rights Reserved.