HIV Cure: Are we making any progress?

Steven Deeks, MD

Professor of Medicine Division of HIV, Infectious Diseases, and Global Medicine Zuckerberg San Francisco General University of California, San Francisco

It is not likely economically nor logistically feasible to deliver daily antiretroviral therapy (ART) to > 38 million people with HIV for their entire lives

Tony Fauci

HIV Cure: Background

- Only ~1% of genomes are intact and only a subset of these are inducible (the "replication-competent reservoir")
 - Assays to measure relevant reservoir in development (IPDA, imaging) but treatment interruptions remain most informative
- Reservoir primarily maintained by clonal proliferation
 - Antigen (CMV), cytokines (IL-7), integration events
- SIV/SHIV remission (durable control) and even cure (eradication) achieved in many monkey experiments; progress in people limited

How will HIV be cured?

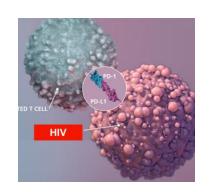

HIV cure strategies

Most approaches involve combination of reservoir reduction and immune enhancement ("reduce and control"), with growing interest in gene therapy and eventually "one shot" cures

Early ART

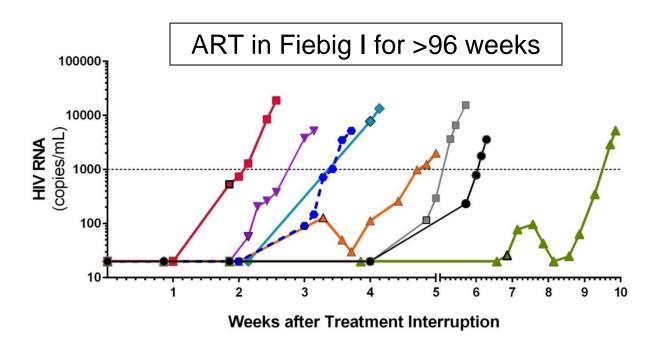
Latency reversal Latency silencing

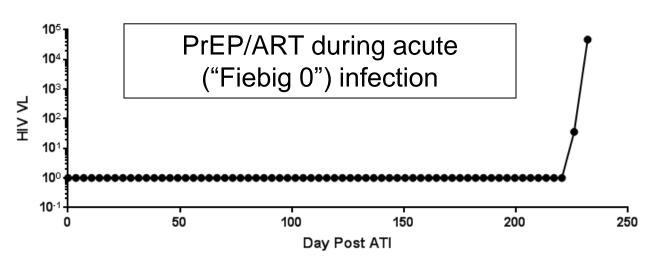
Gene therapy



Reservoir reduction and elimination

Vaccines Antibodies


Immunotherapy



Immune enhancement

Early ART

Very early ART (including "Fiebig 0") is not curative

medicine

Rapid HIV RNA rebound after antiretroviral treatment interruption in persons durably suppressed in Fiebig I acute HIV infection

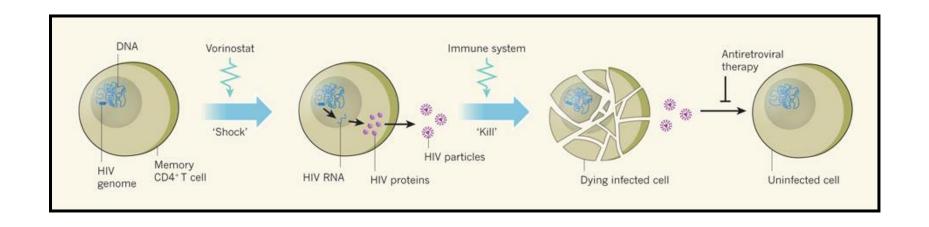
Donn J. Colby¹, Lydie Trautmann²³, Suteeraporn Pinyakorn²³, Louise Leyre⁴, Amélie Pagliuzza⁴, Eugène Kroon¹, Morgane Rolland²³, Hiroshi Takata²³, Supranee Buranapraditkun²³,5.6, Jintana Intasan¹, Nitiya Chomchey¹, Roshell Muir², Elias K. Haddad², Sodsai Tovanabutra²³, Sasiwimol Ubolyam³, Diane L. Bolton²³, Brandie A. Fullmer⁵, Robert J. Gorelick³, Lawrence Fox¹o, Trevor A. Crowell²³, Rapee Trichavaroj¹¹, Robert O'Connell¹¹, Nicolas Chomont ⊙⁴, Jerome H. Kim²¹³, Nelson L. Michael², Merlin L. Robb²³, Nittaya Phanuphak¹, Jintanat Ananworanich ⊙¹².².³,¹²× and The RV411 study group

HIV-1 persistence following extremely early initiation of antiretroviral therapy (ART) during acute HIV-1 infection: An observational study

Timothy J. Henrich¹*, Hiroyu Hatano², Oliver Bacon^{2,3}, Louise E. Hogan¹, Rachel Rutishauser^{1,2}, Alison Hill⁴, Mary F. Kearney⁵, Elizabeth M. Anderson⁵, Susan P. Buchbinder^{2,3}, Stephanie E. Cohen^{2,3}, Mohamed Abdel-Mohsen^{2,6}, Christopher W. Pohlmeyer⁷, Remi Fromentin⁸, Rebecca Hoh², Albert Y. Liu^{2,3}, Joseph M. McCune¹, Jonathan Spindler⁵, Kelly Metcalf-Pate⁷, Kristen S. Hobbs¹, Cassandra Thanh¹, Erica A. Gibson¹, Daniel R. Kuritzkes^{9,10}, Robert F. Siliciano^{11,12}, Richard W. Price¹³, Douglas D. Richman^{14,15}, Nicolas Chomont⁸, Janet D. Siliciano¹⁰, John W. Mellors¹⁶, Steven A. Yukl^{17,18}, Joel N. Blankson⁷, Teri Liegler², Steven G. Deeks²

The Control of HIV After Antiretroviral Medication Pause (CHAMP) Study: Posttreatment Controllers Identified From 14 Clinical Studies

Golnaz Namazi, ^{1,a} Jesse M. Fajnzylber, ^{1,a} Evgenia Aga, ² Ronald J. Bosch, ² Edward P. Acosta, ³ Radwa Sharaf, ¹ Wendy Hartogensis, ⁴ Jeffrey M. Jacobson, ⁵ Elizabeth Connick, ⁶ Paul Volberding, ⁴ Daniel Skiest, ⁷ David Margolis, ⁸ Michael C. Sneller, ⁹ Susan J. Little, ¹⁰ Sara Gianella, ¹⁰ Davey M. Smith, ¹⁰ Daniel R. Kuritzkes, ¹ Roy M. Gulick, ¹¹ John W. Mellors, ¹² Vikram Mehraj, ¹³ Rajesh T. Gandhi, ¹⁴ Ronald Mitsuyasu, ¹⁵ Robert T. Schooley, ¹⁰ Keith Henry, ¹⁶ Pablo Tebas, ¹⁷ Steven G. Deeks, ⁴ Tae-Wook Chun, ⁹ Ann C. Collier, ¹⁸ Jean-Pierre Routy, ¹³ Frederick M. Hecht, ⁴ Bruce D. Walker, ¹⁹ and Jonathan Z. Li^{1,6}


Post-Treatment HIV-1 Controllers with a Long-Term Virological Remission after the Interruption of Early Initiated Antiretroviral Therapy ANRS VISCONTI Study

Asier Sáez-Cirión^{1*}, Charline Bacchus², Laurent Hocqueloux³, Véronique Avettand-Fenoel^{4,5}, Isabelle Girault⁶, Camille Lecuroux⁶, Valerie Potard^{7,8}, Pierre Versmisse¹, Adeline Melard⁴, Thierry Prazuck³, Benjamin Descours², Julien Guergnon², Jean-Paul Viard^{5,9}, Faroudy Boufassa¹⁰, Olivier Lambotte^{6,11}, Cécile Goujard^{10,11}, Laurence Meyer^{10,12}, Dominique Costagliola^{7,8,13}, Alain Venet⁶, Gianfranco Pancino¹, Brigitte Autran², Christine Rouzioux^{4,5*}, the ANRS VISCONTI Study Group¹

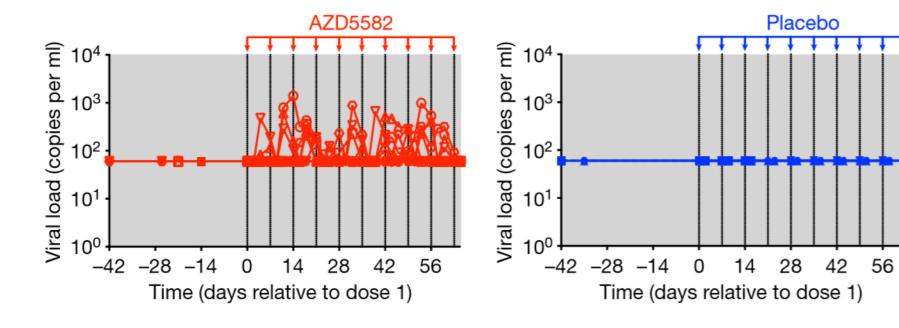
- Some (~10%) of people who start therapy early (but not too early) and remain on therapy for years exhibit at least partial control after ART is interrupted
 - May occur in chronic infection (rare)
- No biomarker available
- Mechanism unknown
 - Elite controllers: Adaptive immunity (CD8+ T cells)
 - PTCs: Innate immunity (NK cells)

Latency reversal (shock and kill)

Shock and kill Force virus out of hiding (latency) and hope the cell dies

- Multiple latency reversing agents tested: effect in humans is modest at best, and not associated with reservoir reduction
- Basic discovery aimed at identifying novel pathways or combinations

SMAC-mimetics routinely induce latency reversal in animal models

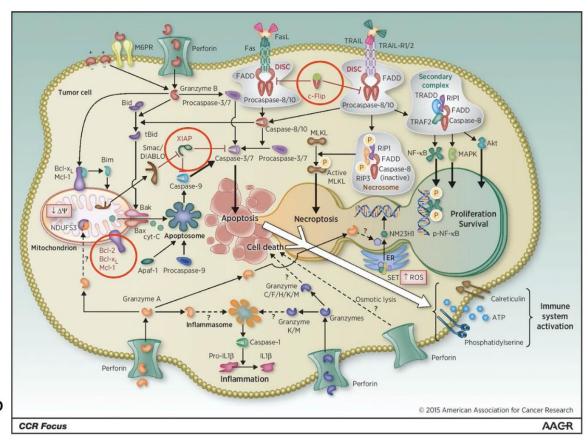


https://doi.org/10.1038/s41586-020-1951-3

necessed: 12 April 2015

Published online: 22 January 2020

Rae Ann Spagnuolo¹²³, David M., Itibeck⁶⁷, Cameron Mattingly⁷, Phong T. Ho¹²³, Nils Scho Corinne O. Cammon¹²³, Greg K. Tharp⁸, Matthew Kanke⁸⁰, Zhang Wang¹¹, Rachel A. Cleary¹²³, Amit A. Upadhyay⁷, Chandrav De¹²³, Saintedyn R. Wills^{23,56}, Shane D. Falcinelli^{23,56}, Cristin Galardi⁵⁷, Hasse Walum⁸, Nathaniel J. Schramm¹²³, Jennifer Deutsch⁷, Jeffrey D. Lifson¹², Christine M. Fennessey¹³, Brandon F. Keele¹³, Sherrie Jean⁸, Sean Magulre⁸, Baolin Liao^{12,23,6}, Edward P. Browne^{2,25}, Robert G. Ferris⁵⁷, Jessica H. Brehm¹³, David Favre⁵³, Thomas H. Vanderford⁴⁷, Steven E. Bosinger⁸³, Corbin D. Dones⁸³⁰, Jean-Pierre Routy^{8,47}, Nancle M. Archin^{1,25}, Royd M. Margolis^{2,15,12,13}, Angela Wahl^{12,3}, Richard M. Dunham^{2,25,6,27,14}, Guldo Silvestri^{6,5}, Ann Chahroudi^{4,5,15,21}, §



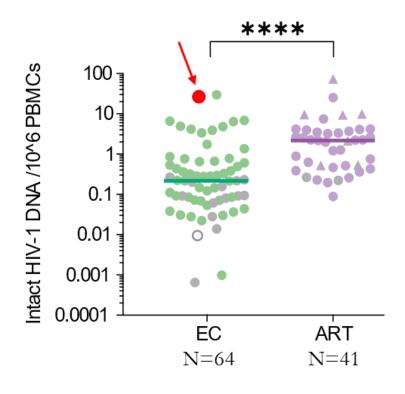
- No change in reservoir or delay in rebound
 - Why do productive, virus-producing cells persist?
- Toxicity may prevent rapid clinical development

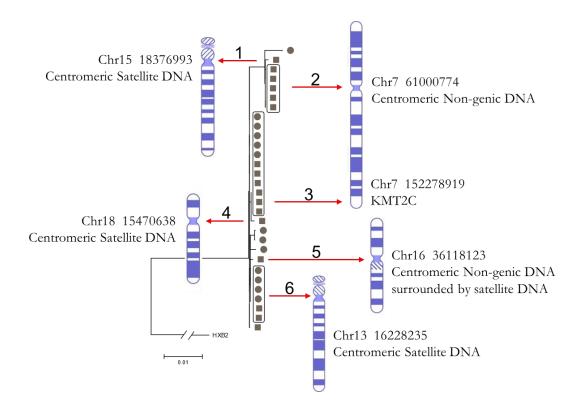
Intrinsic resistance of reservoir cells to immune killing Many cellular factors associated with cell survival are enhanced (Bcl-2, others) in infected cells

"Target Cells"
Are active and selfregulating partners
in 'killing'

- Examples of known inhibitors of killing
- HIV persistence on ART is tied to the properties of reservoir-harboring cells
- Do cells that over-express CTL resistance factors preferentially survive to form the reservoir? Undergo clonal expansion?

Luis Martinez-Lostao et al. Clin Cancer Res, 2015.


Latency silencing (block and lock)

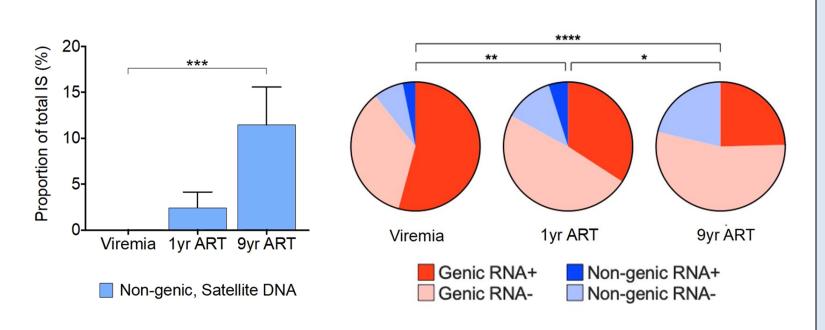

Natural cures and exceptional control Intact proviral genomes accumulate in "gene deserts", which is associated with deep and possibly irreversible latency

Distinct viral reservoirs in individuals with spontaneous control of HIV-1

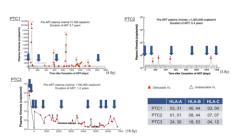
Chenyang Jiang^{1,2,19}, Xiaodong Lian^{1,2,19}, Ce Gao^{1,15}, Xiaoming Sun¹, Kevin B. Einkauf^{1,2}, Joshua M. Chevalier², Samantha M. Y. Chen¹, Stephane Hua¹, Ben Rhee^{1,2}, Kaylee Chang¹, Jane E. Blackmer¹, Matthev Osborn¹, Michael J. Peluso³, Rebecca Hoh³, Ma Somsouk³, Jeffrey Milush³, Lynn N. Bertagnolli⁴, Sarah E. Sweet⁴, Joseph A. Varriale⁴, Peter D. Burbelo⁵ Tae-Wook Chun⁶, Gregory M. Laird⁷, Erik Serrao^{8,0}, Alan N. Engelman^{8,0}, Mary Carrington^{1,10}, Robert F. Siliciano^{4,11}, Janet M. Siliciano^{4,11}, Steven G. Deeks³, Bruce D. Walker^{1,11,12,13}, Mathias Lichterfeld^{1,12,14} & Xu G. Yu^{1,12,13}

Natural Cures

HIV diagnosed in 1992, no ART, undetectable virus 24 years (39 viral loads; one blip), no intact HIV DNA, low and declining HIV antibody levels; lowest level of HIV ever recorded; second case reported at CROI 2021



		**	****	
Intact HIV-1 DNA /10^6 PBMCs	100 10 10 10 10 10 10 10 10 10 10 10 10	0	2200023	
=	0.0001	ÉC	ART	


Test	Cell number	Cell type
Sequencing	>1.5b	PBMC
Intact DNA (PCR)	14m	Resting CD4
Viral outgrowth	340m	Resting CD4

Post-treatment control: Block and lock

- Provirus population increasingly enriched in "gene deserts"
- Intact genomes in ex-genic regions are clonal; those in genic regions are less clonal (singlets)
- Data suggests potent elimination of any expressed proviruses

Exceptional Controllers and "Block and Lock"

- Rare clinical phenotype
- Mechanism unknown
- Similar trends reported in PTCs (CROI 2021)
- Are we treating too many elite controllers?
- Can we recapitulate this phenotype therapeutically?
 - Lock-and-block strategies: mTOR inhibitors
 - Long-term ART

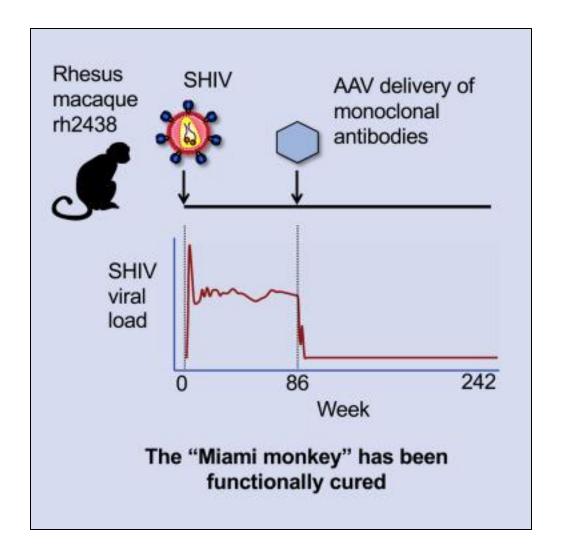
Intact HIV-1 proviruses accumulate at distinct chromosomal positions during prolonged antiretroviral therapy

Gene therapy

Gene editing for an HIV Cure: Proof of concept

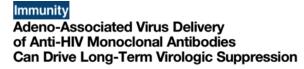
The NEW ENGLAND
JOURNAL of MEDICINE

Long-Term Control of HIV by CCR5 Delta32/ Delta32 Stem-Cell Transplantation


Gero Hütter, M.D., Daniel Nowak, M.D., Maximilian Mossner, B.S., Susanne Ganepola, M.D., Arne Müßig, M.D., Kristina Allers, Ph.D., Thomas Schneider, M.D., Ph.D., Jörg Hofmann, Ph.D., Claudia Kücherer, M.D., Olga Blau, M.D., Igor W. Blau, M.D., Wolf K. Hofmann, M.D., and Eckhard Thiel, M.D.

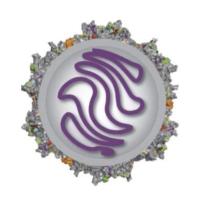
HIV-1 remission following CCR5 Δ 32/ Δ 32 haematopoietic stem-cell transplantation

Ravindra K. Gupta^{1,2,3,4,5}*, Sultan Abdul-Jawad¹, Laura E. McCoy¹, Hoi Ping Mok⁴, Dimitra Peppa^{3,6}, Maria Salgado⁷, Javier Martinez-Picado^{7,8,9}, Monique Nijhuis¹⁰, Annemarie M. J. Wensing¹⁰, Helen Lee¹¹, Paul Grant¹², Eleni Nastouli¹², Jonathan Lambert¹³, Matthew Pace⁶, Fanny Salasc⁴, Christopher Monit¹, Andrew J. Innes^{14,15}, Luke Muir¹, Laura Waters³, John Frater^{6,16}, Andrew M. L. Lever^{4,17}, Simon G. Edwards³, Ian H. Gabriel^{14,15,18,19} & Eduardo Olavarria^{14,15,19}


One-shot cure approaches

Sequential LASER ART and CRISPR Treatments Eliminate HIV-1 in a Subset of Infected Humanized

Prasanta K. Dashi ⁴, Rafal Kaminski^{2,4}, Ramona Bella^{2,4}, Hang Su¹, Saumi Mathews¹, Taha M. Ahooyi²,
Chen Chen², Pietro Mancuso², Rahsan Sariyer², Pasquale Ferrante², Martina Donadoni³, Jake A. Robinson²,
Brady Silman³, Pyili Lin¹, James R. Haliare³, Mary Bamoub, Monailish Bango³, Nagsen Boutam³, R. Lee Mosley³,
Larisa Y. Poluektova³, JoEllyn McMillan¹, Aditya N. Bade¹, Santhi Gorantla³, Ilker K. Sariyer³, Tricia H. Burdo²,
Won-Bin Young², Shohreh Amini², Jennifer Gordon², Jeffrey M. Jacobson², Benson Edagwa³, Kamel Khalil² &
Houstef E. Gendelman³

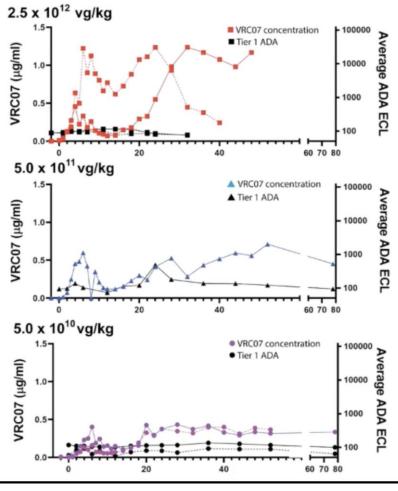


José M. Martinez-Navio, 1.6 Sebastian P. Fuchs, 1.6 Shara N. Pantry, 1 William A. Lauer, 1 Natasha N. Duggan, Brandon F. Keele, 2 Eva G. Rakasz, 3 Guangping Gao, 4 Jeffrey D. Lifson, 2 and Ronald C. Desrosiers 1.6.7.2

Gene delivery of long-acting antiviral (bANb) or direct *in vivo* gene editing (HIV, CCR5) might eventually lead to durable cure for treated and even untreated people

Aspirational, but theoretically possible

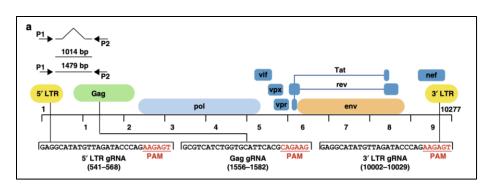
AAV vectors can be used for durable antibody production Recapitulating "Miami Monkey" in people

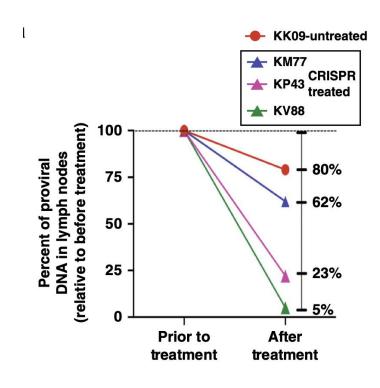


- Adeno-Associated Viral vector
- IM injection
- Episomal (nuclear, stable) DNA
- Safe

=> Encode VRC-07 broadly-neutralizing antibody (bnAb)

Measurable VRC-07 induced in 5/8 participants


(anti-drug antibodies + low [VRC-07] in 3/8 participants)



Weeks after administration

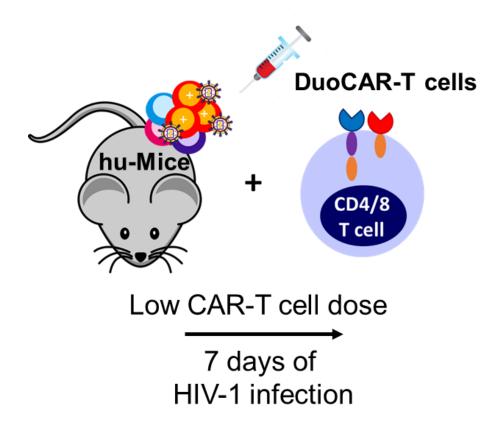
Direct editing of the provirus with vector-delivered enzymes AAV-delivered CRISP/Cas9 had variable efficacy in disrupting the provirus in macaques receiving ART)

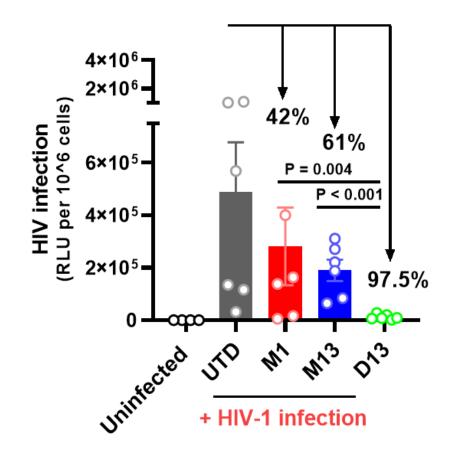
CAR-T cells: Modified cells persist for decades, based on our experience with first generation of CAR-T ells in 1990s

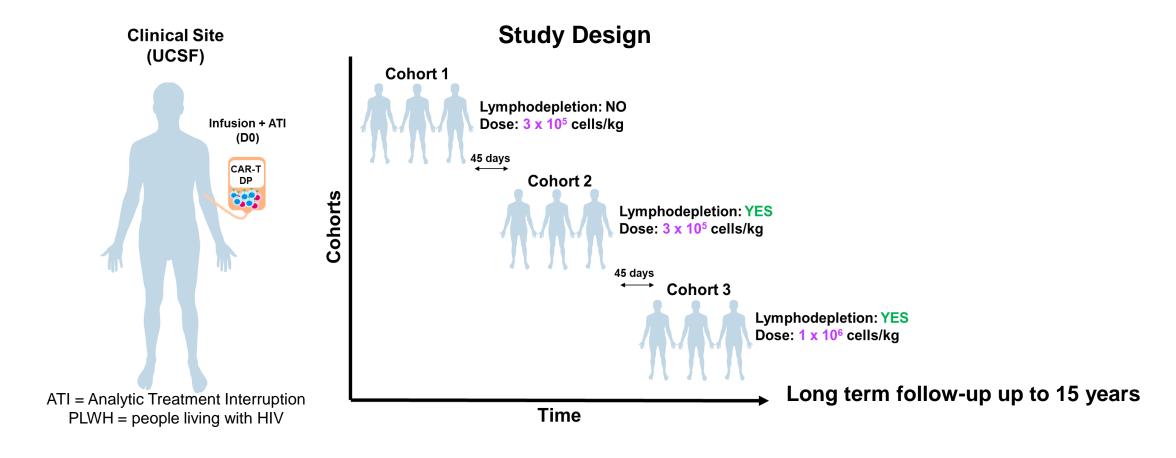
Decade-Long Safety and Function of Retroviral-Modified Chimeric Antigen Receptor T Cells

John Scholler,¹* Troy L. Brady,²* Gwendolyn Binder-Scholl,¹ Wei-Ting Hwang,³ Gabriela Plesa,¹ Kristen M. Hege,⁴ Ashley N. Vogel,¹ Michael Kalos,¹ James L. Riley,² Steven G. Deeks,⁵ Ronald T. Mitsuyasu,⁶ Wendy B. Bernstein,⁷ Naomi E. Aronson,^{7,8} Bruce L. Levine,¹ Frederic D. Bushman,²† Carl H. June¹†

Multispecific anti-HIV duoCAR-T cells display broad in vitro antiviral activity and potent in vivo elimination of HIV-infected cells in a humanized mouse model


Kim Anthony-Gonda¹*, Ariola Bardhi²*, Alex Ray², Nina Flerin², Mengyan Li², Weizao Chen³, Christina Ochsenbauer⁴, John C. Kappes^{4,5}, Winfried Krueger¹, Andrew Worden¹, Dina Schneider¹, Zhongyu Zhu¹, Rimas Orentas^{1†}, Dimiter S. Dimitrov^{6‡}, Harris Goldstein^{2‡}, Boro Dropulić^{1‡}


Anti-HIV duoCAR-T cell therapy eliminates cells with HIV


Multispecific anti-HIV duoCAR-T cells display broad in vitro antiviral activity and potent in vivo elimination of HIV-infected cells in a humanized mouse model

Kim Anthony-Gonda¹*, Ariola Bardhi²*, Alex Ray², Nina Flerin², Mengyan Li², Weizao Chen³, Christina Ochsenbauer⁴, John C. Kappes^{4,5}, Winfried Krueger¹, Andrew Worden¹, Dina Schneider¹, Zhongyu Zhu¹, Rimas Orentas^{1†}, Dimiter S. Dimitrov^{6‡}, Harris Goldstein^{2‡}, Boro Dropulic^{1‡}

First-in-human phase I/II study to evaluate the safety and efficacy of duoCAR-T cell therapy in ART-suppressed PLWH (NCT04648046)

Immunotherapy: Vaccines, broadly neutralizing antibodies, adjuvants, cytokines, and immune checkpoint blockers

"Elite" control is most consistently associated with HIV-specific CD8+ T cell responses, although other pathways are likely involved

Protective Class I Alleles B*57, B*27, B*13, B*58

CD8+ T Cell Proliferation

Gag-specific degranulation, cytokines (polyfunctional CD8+ T cells)

Inhibitory activity (ex vivo autologous CD4+ T cells)

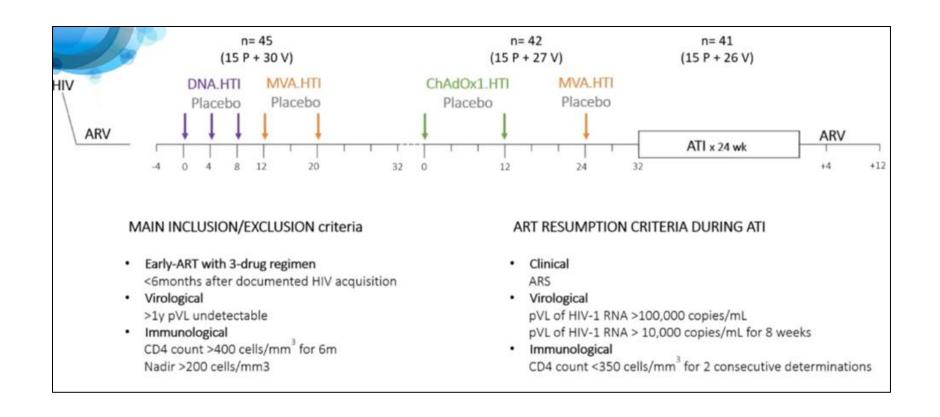
Perforin and granzyme killing

Low PD-1, CTLA-4, TIGIT

Low CD38

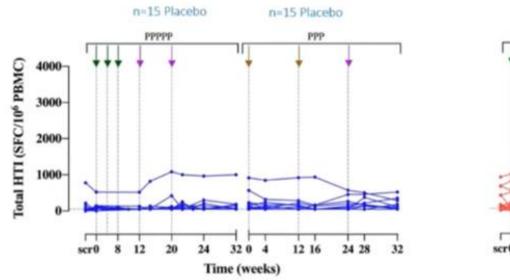
Vulnerable epitopes

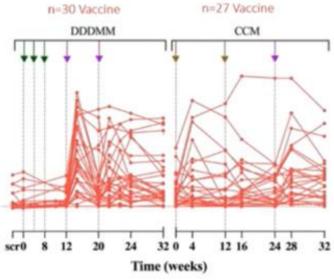
TCR diversity

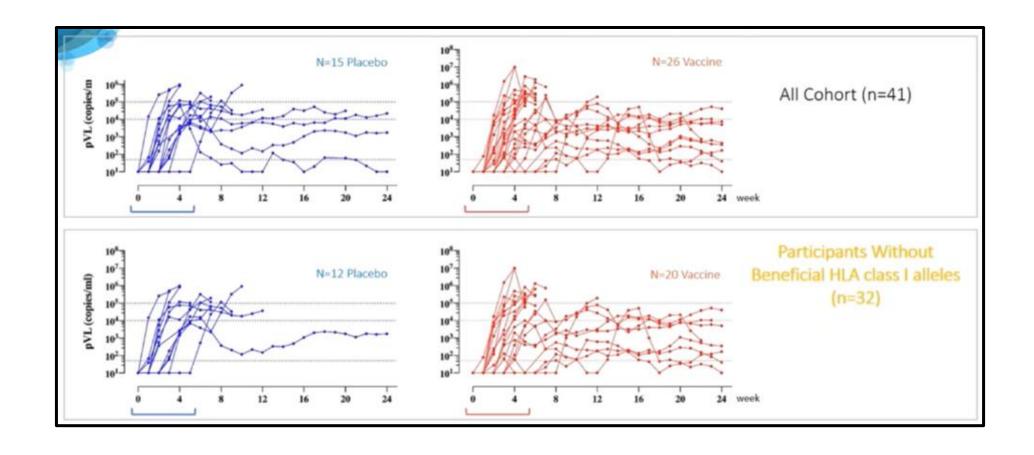

Polyfunctional CD4+ T cells

Public TCR

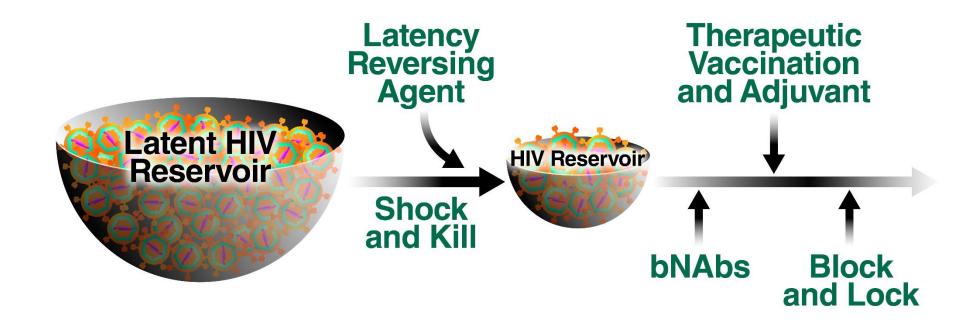
Low T reg function


Low IDO

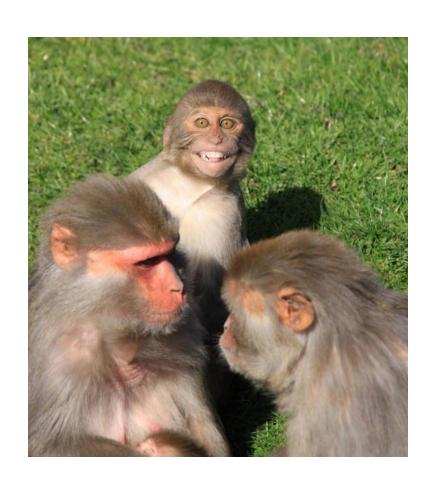

AELIX-002 Study Design Randomized study of multi-vectored therapeutic vaccine


AELIX-002 Study Design Randomized study of multi-vectored therapeutic vaccine

Fresh IFNy ELISPOT in PBMC covering HTI and non-HTI HIV regions (clade B 15mer overlapping peptides - OLP)



AELIX-002 Study Design Randomized study of multi-vectored therapeutic vaccine



Reduce and Control

Combining Multiple Modalities To Achieve a Sustained Viral Remission in the Absence of ART

Combination Immunotherapy: Proof-of-concept in monkeys

Immune clearance of highly pathogenic SIV infection

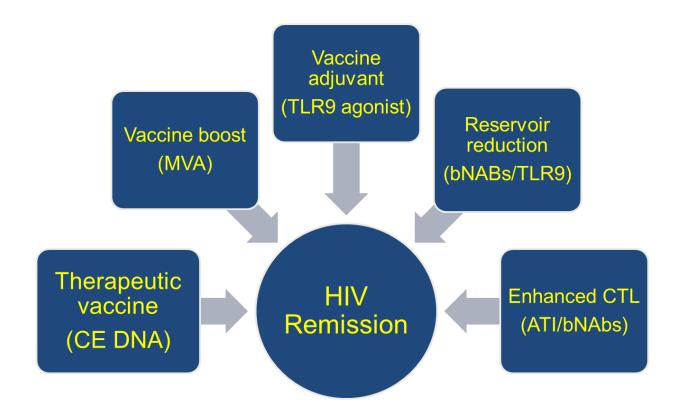
Scott G. Hansen^{1*}, Michael Piatak Jr^{2*}, Abigail B. Ventura¹, Colette M. Hughes¹, Roxanne M. Gilbride¹, Julia C. Ford¹, Kelli Oswald², Rebecca Shoemaker², Yuan Li², Matthew S. Lewis¹, Awbrey N. Gilliam¹, Guangwu Xu¹, Nathan Whizin¹, Benjamin J. Burwitz¹, Shannon L. Planer¹, John M. Turner¹, Alfred W. Legasse¹, Michael K. Axthelm¹, Jay A. Nelson¹, Klaus Früh¹, Jonah B. Sacha¹, Jacob D. Estes², Brandon F. Keele², Paul T. Edlefsen³, Jeffrey D. Lifson² & Louis J. Picker¹

nature

Ad26/MVA therapeutic vaccination with TLR7 stimulation in SIV-infected rhesus monkeys

Erica N. Borducchi¹, Crystal Cabral¹, Kathryn E. Stephenson¹, Jinyan Liu¹, Peter Abbink¹, David Ng'ang'a¹, Joseph P. Nkolola¹, Amanda L. Brinkman¹, Lauren Peter¹, Benjamin C. Lee¹, Jessica Jimenez¹, David Jetton¹, Jade Mondesir¹, Shanell Mojta¹, Abishek Chandrashekar¹, Katherine Mollov¹, Galit Alter², Jeffrey M. Gerold³, Alison L. Hill³, Mark G. Lewis⁴, Maria G. Pau⁵, Hanneke Schuitemaker⁵, Joseph Hesselgesser⁶, Romas Geleziunas⁶, Jerome H. Kim⁷[†], Merlin L. Robb⁷, Nelson L. Michael⁷ & Dan H. Barouch^{1,2}

nature Early antibody therapy can induce long-lasting immunity to SHIV


Yoshiaki Nishimura¹, Rajeev Gautam¹, Tae-Wook Chun², Reza Sadjadpour¹, Kathryn E. Foulds³, Masashi Shingai¹, Florian Klein^{4,5}, Anna Gazumyan⁶, Jovana Golijanin⁶, Mitzi Donaldson³, Olivia K. Donau¹, Ronald J. Plishka¹, Alicia Buckler-White¹, Michael S. Seaman⁷, Jeffrey D. Lifson⁸, Richard A. Koup³, Anthony S. Fauci², Michel C. Nussenzweig^{6,9} & Malcolm A. Martin¹

nature Antibody and TLR7 agonist delay viral rebound in SHIV-infected monkeys

Erica N. Borducchi^{1,6}, Jinyan Liu^{1,6}, Joseph P. Nkolola^{1,6}, Anthony M. Cadena^{1,6}, Wen-Han Yu², Stephanie Fischinger², Thomas Broge², Peter Abbink¹, Noe B. Mercado¹, Abishek Chandrashekar¹, David Jetton¹, Lauren Peter¹, Katherine McMahan¹, Edward T. Moseley¹, Elena Bekerman³, Joseph Hesselgesser³, Wenjun Li⁴, Mark G. Lewis⁵, Galit Alter², Romas Geleziunas³ & Dan H. Barouch^{1,2}*

Combinatorial therapy with a therapeutic conserved element DNA/MVA vaccine strategy, a TLR9 agonist and broadly neutralizing antibodies: A pilot study aimed at inducing an HIV remission (IND 18488)

Conclusions

- Progress continues to be made, primarily in animal models
- Multiple approaches are being tested
 - All are likely to <u>initially</u> be less effective than optimally delivered ART
 - Iterative process expected with multiple "shots on goal" and ultimate optimization for addressing the needs of the global pandemic
- Massive synergies exist with HIV prevention (vaccines, bNAbs) and non-HIV immunotherapies (cancer, transplant, autoimmunity)